Question	Answer
1	a) 15 counters and 14 counters to show 15 is one more than 14 b) 21 counters to show 21 is 9 less than 30 or 3 tens
2	a) 31 is less than 34 b) 18 is greater than 8 c) seventy is greater than seventeen d) $40+5$ is equal to 45 e) 9 tens is greater than 9 ones f) 23 ones is less than $30+7$
3	a) < b) < c) < d) > e) > f) $=$
4	a) any number less than 48 , e.g. 35 b) any number less than 15 , e.g. 12 c) 60 d) any number greater than 39 , e.g. 45 e) any number greater than 11, e.g. 20 There are multiple possibilities for the missing numbers, with the exception of 6 tens is equal to 60 , as both numbers must be equivalent when using the $=$ sign.
5	a) < b) > c) < d) >
6	Rosie could be thinking of 33 or 34
7	The missing value could be $22,23,24,25,26,27,28$ or 29 The missing value cannot be 21 or 30 as this would make it equal to one of the numbers.
8	false Children should use base ten to prove that 2 tens and 13 is greater than 3 tens.

